1. <var id="66166"><rt id="66166"></rt></var>
        <var id="66166"><rt id="66166"><big id="66166"></big></rt></var>
        首頁 > 論文 > 激光與光電子學進展 > 56卷 > 14期(pp:140101--1)

        湍流大氣中環形Airy高斯渦旋光束的強度和相位特性

        Intensity and Phase Characteristics of Ring Airy-Gaussian Vortex Beam in Atmospheric Turbulence

        • 摘要
        • 論文信息
        • 參考文獻
        • 被引情況
        • PDF全文
        分享:

        摘要

        采用分步傅里葉算法,研究了湍流大氣中環形Airy高斯渦旋光束的傳輸強度和相位分布特性。對比分析了環形Airy高斯渦旋光束在湍流大氣中和在自由空間中傳輸特性的變化,揭示了傳輸距離和分布因子對湍流大氣中環形Airy高斯渦旋光束平均強度的影響規律。結果表明:由于大氣折射率的隨機擾動,光束傳輸過程中相位波前發生畸變。由于軌道角動量的存在,光束的等相位線變成弧線,且隨著傳輸距離的增大,弧線逐漸變得不平滑。湍流大氣中環形Airy高斯渦旋光束的平均強度隨傳輸距離的變化呈Airy函數分布,且分布因子越小,光束的相位波前隨傳輸距離的變化越明顯,分布因子對光束傳輸的穩定性和傳輸質量的影響越大。

        Abstract

        In this study, the intensity and phase distributions of a ring Airy-Gaussian vortex beam propagating in atmospheric turbulence are numerically studied based on the split-step Fourier method. The propagation characteristics of the ring Airy-Gaussian vortex beam in atmospheric turbulence are discussed and compared to those in a free space. The impacts of propagation distance and distribution factor on the average intensity of ring Airy-Gaussian vortex beam in atmospheric turbulence are revealed. Results demonstrate that the phase wavefronts of the beam during the propagation process are distorted due to the random disturbance of the atmospheric refractive index. The equiphase line of the beam turns into an arc due to the orbital angular momentum, and the arc becomes non-smooth gradually with the increase of the propagation distance. In addition, the variation of the average intensity of ring Airy-Gaussian vortex beam with the propagation distance in atmospheric turbulence follows the Airy function distribution. The smaller the distribution factor is, the more obvious the variation of the phase wavefronts with the propagation distance is. The stability and propagation quality of the beam are affected by the distribution factor.

        Newport宣傳-MKS新實驗室計劃
        補充資料

        DOI:10.3788/LOP56.140101

        所屬欄目:大氣光學與海洋光學

        基金項目:國家自然科學基金、陜西省高校科協青年人才托舉計劃項目;

        收稿日期:2019-01-07

        修改稿日期:2019-02-26

        網絡出版日期:2019-07-01

        作者單位    點擊查看

        李亞清:西安工業大學光電工程學院, 陜西 西安 710021
        王利國:西安工業大學光電工程學院, 陜西 西安 710021
        王謙:西安工業大學光電工程學院, 陜西 西安 710021

        聯系人作者:李亞清(liyaqing0401@163.com)

        備注:國家自然科學基金、陜西省高校科協青年人才托舉計劃項目;

        【1】Gu Y L and Gbur G. Scintillation of Airy beam arrays in atmospheric turbulence. Optics Letters. 35(20), 3456-3458(2010).

        【2】Chu X X. Evolution of an Airy beam in turbulence. Optics Letters. 36(14), 2701-2703(2011).

        【3】Chen R P, Zheng H P and Dai C Q. Wigner distribution function of an Airy beam. Journal of the Optical Society of America A. 28(6), 1307-1311(2011).

        【4】Deng D M, Du S L and Guo Q. Energy flow and angular momentum density of nonparaxial Airy beams. Optics Communications. 289, 6-9(2013).

        【5】Ji X L. Eyyubo lu H T, Ji G M, et al. Propagation of an Airy beam through the atmosphere . Optics Express. 21(2), 2154-2164(2013).

        【6】Tao R M, Si L, Ma Y X et al. Average spreading of finite energy Airy beams in non-Kolmogorov turbulence. Optics and Lasers in Engineering. 51(4), 488-492(2013).

        【7】Chen C Y, Yang H M, Kavehrad M et al. Propagation of radial Airy array beams through atmospheric turbulence. Optics and Lasers in Engineering. 52, 106-114(2014).

        【8】Wen W, Chu X X and Ma H T. The propagation of a combining Airy beam in turbulence. Optics Communications. 336, 326-329(2015).

        【9】Chen B, Chen C D, Peng X et al. Propagation of sharply autofocused ring Airy Gaussian vortex beams. Optics Express. 23(15), 19288-19298(2015).

        【10】Jiang Y F, Huang K K and Lu X H. Propagation dynamics of abruptly autofocusing Airy beams with optical vortices. Optics Express. 20(17), 18579-18584(2012).

        【11】Yang A L and Lin Q. Polarization characteristics of coherent partially Airy beams propagating in atmospheric turbulence. Acta Physica Sinica. 63(20), (2014).
        楊愛林, 林強. 部分相干Airy光束在湍流大氣中傳輸時的偏振特性. 物理學報. 63(20), (2014).

        【12】Ke X Z and Wang S. Evolution of the intensity of partially coherent airy beam in atmospheric turbulence. Acta Photonica Sinica. 46(7), (2017).
        柯熙政, 王松. 部分相干Airy光束在大氣湍流中的光強演化. 光子學報. 46(7), (2017).

        【13】Wang X Z, Tang F, Yuan M J et al. Experimental simulation of circular-Airy beam drift in atmospheric turbulence. Chinese Journal of Lasers. 42(8), (2015).
        王曉章, 唐峰, 原勐捷 等. 實驗模擬環形艾里光束在大氣擾動中的光束漂移. 中國激光. 42(8), (2015).

        【14】Cheng Z, Chu X C, Zhao S H et al. Study of the drift characteristics of Airy vortex beam in atmospheric turbulence. Chinese Journal of Lasers. 42(12), (2015).
        程振, 楚興春, 趙尚弘 等. 艾里渦旋光束在大氣湍流中的漂移特性研究. 中國激光. 42(12), (2015).

        【15】Di H P, Zhang Q B, Zhou M C et al. Propagation of ring Airy Gaussian vortex beams in anisotropic non-Kolmogorov turbulence atmosphere. Chinese Journal of Lasers. 45(3), (2018).
        狄顥萍, 張淇博, 周木春 等. 圓艾里高斯渦旋光在各向異性非Kolmogorov湍流大氣中的傳輸. 中國激光. 45(3), (2018).

        【16】Flatté S M, Martin J and Wang G Y. Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment. Journal of the Optical Society of America A. 10(11), 2363-2370(1993).

        【17】Martin J M and Flatté S M. Simulation of point-source scintillation through three-dimensional random media. Journal of the Optical Society of America A. 7(5), 838-847(1990).

        【18】Martin J M and Flatté S M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. Applied Optics. 27(11), 2111-2126(1988).

        【19】Li Y Q, Wang L G and Wu Z S. Study on intensities, phases and orbital angular momentum of vortex beams in atmospheric turbulence using numerical simulation method. Optik. 158, 1349-1360(2018).

        【20】Wang L G. Characteristics of reflected wave from targets illuminated by laser beam in turbulent atmosphere Xi''an:. Xidian University. 36-40(2014).
        王利國. 湍流大氣中激光波束目標回波特性. 西安: 西安電子科技大學. 36-40(2014).

        【21】Flatté S M, Bracher C and Wang G Y. Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation. Journal of the Optical Society of America A. 11(7), 2080-2092(1994).

        【22】Flatté S M and Gerber J S. Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence. Journal of the Optical Society of America A. 17(6), 1092-1097(2000).

        【23】Nelson D H and Walters D L. MacKerrow E P, et al. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar. Applied Optics. 39(12), 1857-1871(2000).

        引用該論文

        Yaqing Li, Liguo Wang, Qian Wang. Intensity and Phase Characteristics of Ring Airy-Gaussian Vortex Beam in Atmospheric Turbulence[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140101

        李亞清, 王利國, 王謙. 湍流大氣中環形Airy高斯渦旋光束的強度和相位特性[J]. 激光與光電子學進展, 2019, 56(14): 140101

        您的瀏覽器不支持PDF插件,請使用最新的(Chrome/Fire Fox等)瀏覽器.或者您還可以點擊此處下載該論文PDF

        色女孩